log[2](x-4)-log[2](x+4)=3

Simple and best practice solution for log[2](x-4)-log[2](x+4)=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for log[2](x-4)-log[2](x+4)=3 equation:


Simplifying
log[2](x + -4) + -1log[2](x + 4) = 3

Reorder the terms:
glo * 2(-4 + x) + -1log[2](x + 4) = 3

Reorder the terms for easier multiplication:
2glo(-4 + x) + -1log[2](x + 4) = 3
(-4 * 2glo + x * 2glo) + -1log[2](x + 4) = 3
(-8glo + 2glox) + -1log[2](x + 4) = 3

Reorder the terms:
-8glo + 2glox + -1glo * 2(4 + x) = 3

Reorder the terms for easier multiplication:
-8glo + 2glox + -1 * 2glo(4 + x) = 3

Multiply -1 * 2
-8glo + 2glox + -2glo(4 + x) = 3
-8glo + 2glox + (4 * -2glo + x * -2glo) = 3
-8glo + 2glox + (-8glo + -2glox) = 3

Reorder the terms:
-8glo + -8glo + 2glox + -2glox = 3

Combine like terms: -8glo + -8glo = -16glo
-16glo + 2glox + -2glox = 3

Combine like terms: 2glox + -2glox = 0
-16glo + 0 = 3
-16glo = 3

Solving
-16glo = 3

Solving for variable 'g'.

Move all terms containing g to the left, all other terms to the right.

Divide each side by '-16lo'.
g = -0.1875l-1o-1

Simplifying
g = -0.1875l-1o-1

See similar equations:

| y+3(6y+4)=12(y+1)+5y | | 9x^2-12x-21=0 | | x^2-(5+k)x+36=0 | | log(6)*(5x-3)=3 | | -5r-4=6r+51 | | 4h+7h-16=16 | | 6m=2(7m+28) | | 19=p-(-6) | | 4x+1-7x=-8 | | 0.2x-0.6(4-x)=-0.4 | | x^2-5x=8x-3 | | 53c-3c+15=16.84 | | 15x^2+10x-40=0 | | 3-2(b-5)=7 | | 2x-2(-4-3x)=-10+8x | | x^4+16y^4=32 | | ln(t+1)=ln(3)(t-4) | | 4+4+3=11 | | abs(3x+5)=abs(3x+4) | | t^2-t-40=0 | | 4+-1y=x | | 0.2x-0.6(4-x)=0.4 | | 3x+3x-6=-6 | | -7x+5=19 | | 6+xy=7x-8y | | ln(5x)-ln(3)=6 | | 8x+5=2x-37 | | 6x+40=40 | | 0.2y+0.9=0.4-0.3y | | 10(z+3)-4(z-4)+3(z-3)= | | 7-y=-13 | | 2=6(x+8)-7x |

Equations solver categories